

Model rockets, $\mathrm{A}-\mathrm{C}$

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=0.676 \mathrm{~kg}$
Results: time to apogee: 12.6s, expected altitude: 985 m
empty weight [kg]

Kosdon-by-Aerotech G82W

$\mathrm{I}_{\text {tot }}$	$=143.9 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}$	$=73.4 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}$	$=1.96 \mathrm{~s}$
d	$=29 \mathrm{~mm}$
Data source:	
Aerotech	

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient. 2. Move along horizontal to left border of density scale
2. Move up slanted line to vertical line matching density at launch site
3. From intersection point move horizontally to vertical line matching rocket mass
4. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.681 \mathrm{~kg}$
Results: time to apogee: 13.0s, expected altitude: 991 m
empty weight [kg]

5. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
6. Move along horizontal to left border of density scale
7. Move up slanted line to vertical line matching density at launch site
8. From intersection point move horizontally to vertical line matching rocket mass
9. Read off expected time to apogee from red curves, altitude from green curves

Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.316 \mathrm{~kg}$
Results: time to apogee: 13.7 s , expected altitude: 1037 m
empty weight [kg]

$F^{\text {tot }}=247.8 \mathrm{Ns}$
 $\begin{aligned} \mathrm{F}_{\text {avg }} & =129.8 \mathrm{~N} \\ \mathrm{t}_{\text {bu }} & =1.91 \mathrm{~s}\end{aligned}$
 $\mathrm{d}^{\text {burn }}=29 \mathrm{~mm}$
 Data sourc

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves

Sample: diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.709 \mathrm{~kg}$
Results: time to apogee: 12.8 s , expected altitude: 795 m
empty weight [kg]

takeoff weight [kg]

SOLL

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient

2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves

diameter $=50 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1100 \mathrm{~g} / \mathrm{m}$, weight $=3.020 \mathrm{~kg}$
Results: time to apogee: 12.1s, expected altitude: 642m
empty weight [kg]
(10)
MLOEI
MLOE \quad —"~

Kosdon-by-Aerotech 1301 W

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.224 \mathrm{~kg}$
Results: time to apogee: 16.6 s , expected altitude: 1356 m
empty weight [kg]

takeoff weight [kg]

Kosdon-by-Aerotech
$1550 R$

Data source
Aerotech

$2007-2008$ Andras Miller trans

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.213 \mathrm{~kg}$

Results:
time to apogee: 16.5 s , expected altitude: 1395 m
empty weight [kg]

takeoff weight [kg]
פ0ヤL

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.224 \mathrm{~kg}$
Results: time to apogee: 17.7 s , expected altitude: 1672 m
empty weight [kg]

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.

2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.520 \mathrm{~kg}$

Results: time to apogee: 10.1 s , expected altitude: 430 m
empty weight [kg]

 takeoff weight [kg]

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=3.724 \mathrm{~kg}$
Results: time to apogee: 13.4 s , expected altitude: 884 m
empty weight [kg]

yoss

Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=7180 \mathrm{~g} / \mathrm{m}$, weight $=3.724 \mathrm{~kg}$
Results: time to apogee: 14.0s, expected altitude: 1069 m
empty weight [kg]

takeoff weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{\circ}$, weight $=5.722 \mathrm{~kg}$
Results: time to apogee: 10.2 s , expected altitude: 499 m
empty weight [kg]

Kosdon-by-Aerotech $J \mathbf{7 0 G}$
I tot$=665.1 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}=788.1 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}=0.84 \mathrm{~s}$
$\mathrm{~d} \quad=38 \mathrm{~mm}$
Data source: Aerotech

From rocket diameter scale move down along slanted line to vertical line matching drag coefficient

2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=5.724 \mathrm{~kg}$
Results: time to apogee: 10.3 s , expected altitude: 531 m

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=11.503 \mathrm{~kg}$
Results:
time to apogee: 11.0 s , expected altitude: 559 m
empty weight [kg]

HOSLIY

[سw] גәəəше!๐
Kosdon-by-Aerotech
K1750R

$\mathrm{I}_{\text {tot }}=2468.8 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}=1690.9 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}=1.46 \mathrm{~s}$
$\mathrm{~d}^{2}=54 \mathrm{~mm}$
Data source:
Aerotech

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=12.564 \mathrm{~kg}$
Results:
time to apogee: 14.4 s , expected altitude: 1147 m
empty weight [kg]

MOGLY [wш] дəәшше!

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves

diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=12.620 \mathrm{~kg}$

Results: time to apogee: 15.2 s , expected altitude: 1160 m
empty weight [kg]

6", K-L

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=12.630 \mathrm{~kg}$
Results:
time to apogee: 14.9 s , expected altitude: 1278 m
empty weight [kg]

6", K-L

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=400 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=47.600 \mathrm{~kg}$
Results: time to apogee: 13.1 s , expected altitude: 696 m
empty weight [kg]

G135R	$3-1$
G82W	$3-2$
H130W	$4-2$
H225R	$4-1$
I170S	$4-3,5-1,6-1$
I301W	$4-4,5-2,6-2$
I550R	$4-5,5-3,6-3$
J740G	$5-4,6-4,7-2$
K1750R	$8-2$
K520F	$7-1$
K700F	$7-3,8-1$
K750W	$8-3$
L2300G	$8-4$
M1450W	$10-2$
M2900R	$9-1$
M3500R	$10-1$

