

Model rockets, $\mathrm{A}-\mathrm{C}$

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=30 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.056 \mathrm{~kg}$
Results:
time to apogee: 3.7 s , expected altitude: 62 m
empty weight [g]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.063 \mathrm{~kg}$
Results:
time to apogee: 7.1 s , expected altitude: 300 m
empty weight [g]

Sample: \quad diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{\text {² }}$, weight $=0.123 \mathrm{~kg}$
Results:
time to apogee: 8.5 s , expected altitude: 419 m
empty weight [g]

[^0]1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=0.111 \mathrm{~kg}$
Results: time to apogee: 8.3s, expected altitude: 442 m
empty weight [g]

transiator

M60
[سш| дəəəшย!

empty weight [g]

Sample: diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=0.105 \mathrm{~kg}$
Results: time to apogee: 8.3s, expected altitude: 477 m
empty weight [g]

Sample: \quad diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=0.124 \mathrm{~kg}$
Results: time to apogee: 8.6s, expected altitude: 459 m
empty weight [g]

E12J－RC
$I_{\text {tot }}=34.2 \mathrm{Ns}$
$F_{\text {avg }}=11.2 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}=3.05 \mathrm{~s}$
d
d
Data source：
Aerotech

1．From rocket diameter scale move down along slanted line to vertical line matching drag coefficient．
2．Move along horizontal to left border of density scale
3．Move up slanted line to vertical line matching density at launch site
4．From intersection point move horizontally to vertical line matching rocket mass
5．Read off expected time to apogee from red curves，altitude from green curves
Sample：\quad diameter $=30 \mathrm{~mm}$ ，drag $=0.65$ ，density $=1180 \mathrm{~g} / \mathrm{m}^{3}$ ，weight $=0.139 \mathrm{~kg}$
Results：time to apogee： 10.7 s ，expected altitude： 764 m
empty weight［g］

sample: \quad diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.184 \mathrm{~kg}$
Results: time to apogee: 10.5 s , expected altitude: 686 m
empty weight [g]

sample: diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.187 \mathrm{~kg}$
Results: time to apogee: 11.4 s , expected altitude: 754 m
empty weight [g]

sample: \quad diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=0.123 \mathrm{~kg}$
Results: time to apogee: 9.7 s , expected altitude: 777 m
empty weight [g]

sample: \quad diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.135 \mathrm{~kg}$
Results: time to apogee: 10.0s, expected altitude: 785 m
empty weight [g]

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=30 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.130 \mathrm{~kg}$
Results: time to apogee: 10.7s, expected altitude: 843m
empty weight [g]

Aerotech
$E 18 \mathrm{M}$
M8ا

sample：\quad diameter $=45 \mathrm{~mm}$, drag $=0.65$ ，density $=1180 \mathrm{~g} / \mathrm{m}^{3}$ ，weight $=0.559 \mathrm{~kg}$
Results：time to apogee： 7.4 s ，expected altitude： 255 m
empty weight［kg］

Aerotech F24W

Sample：\quad diameter $=45 \mathrm{~mm}$ ，drag $=0.65$ ，density $=1180 \mathrm{~g} / \mathrm{m}^{3}$ ，weight $=0.526 \mathrm{~kg}$
Results：
time to apogee： 8.6 s ，expected altitude： 373 m
empty weight［kg］

sample: \quad diameter $=45 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=4180 \mathrm{~g} / \mathrm{m}$, weight $=0.535 \mathrm{~kg}$
Results: time to apogee: 8.8s, expected altitude: 381 m
empty weight [kg]

「」92」

Aerotech F26FJ

1．From rocket diameter scale move down along slanted line to vertical line matching drag coefficient．
2．Move along horizontal to left border of density scale
3．Move up slanted line to vertical line matching density at launch site
4．From intersection point move horizontally to vertical line matching rocket mass
5．Read off expected time to apogee from red curves，altitude from green curves
Sample：\quad diameter $=45 \mathrm{~mm}$ ，drag $=0.65$ ，density $=1180 \mathrm{~g} / \mathrm{m}^{3}$ ，weight $=0.551 \mathrm{~kg}$
Results：\quad time to apogee： 9.5 s ，expected altitude： 409 m
empty weight［kg］

time to apogee: 10.1 s , expected altitude: 496 m
empty weight [kg]

F40W

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=0.587 \mathrm{~kg}$
Results: time to apogee: 10.3s, expected altitude: 561 m
empty weight [kg]

sample：drameter $=45 \mathrm{~mm}$ ，drag $=0.65$ ，density $=1180 \mathrm{~g} / \mathrm{m}$ ，weight $=0.548 \mathrm{~kg}$
Results：time to apogee： 10.3 s ，expected altitude： 621 m
empty weight［kg］

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
7. Move along horizontal to left border of density scale
8. From intersection point move horizontally to vertical line matching rocket mass
9. Read off expected time to apogee from red curves, altitude from green curves
Results: time to apogee: 11.1 s , expected altitude: 626 m
empty weight [kg]
rృ 38 b

Aerotech G53FJ
$\begin{aligned} \mathrm{I}_{\text {tot }} & =92.1 \mathrm{Ns} \\ \mathrm{~F}_{\text {avg }} & =49.8 \mathrm{~N} \\ \mathrm{t}_{\text {burn }} & =1.85 \mathrm{~s} \\ \mathrm{~d} & =29 \mathrm{~mm} \end{aligned}$
Data source: Aerotech

1000	2. Move along horizontal to left border of density scale
	3. Move up slanted line to vertical line matching density at launch site
	4. From intersection point move horizontally to vertical line matching rocket mass

4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{\circ}$, weight $=0.602 \mathrm{~kg}$
Results:
time to apogee: 11.0 s , expected altitude: 654 m
empty weight [kg]

From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
6. Move along horizontal to left border of density scale
7. Move up slanted line to vertical line matching density at launch site
From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
8. Move along horizontal to left border of density scale
9. Move up slanted line to vertical line matching density at launch site
10. From intersection point move horizontally to vertical line matching rocket mass
11. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=0.609 \mathrm{~kg}$
Results: time to apogee: 11.9 s , expected altitude: 701 m
empty weight [kg]

MO†勺

1．From rocket diameter scale move down along slanted line to vertical line matching drag coefficient．
2．Move along horizontal to left border of density scale
3．Move up slanted line to vertical line matching density at launch site
4．From intersection point move horizontally to vertical line matching rocket mass
5．Read off expected time to apogee from red curves，altitude from green curves
sample：\quad diameter $=45 \mathrm{~mm}$, drag $=0.65$ ，density $=1180 \mathrm{~g} / \mathrm{m}^{2}$ ，weight $=0.573 \mathrm{~kg}$
Results：time to apogee： 11.6 s ，expected altitude： 731 m
empty weight［kg］

Aerotech
G35E

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=0.551 \mathrm{~kg}$
Results: time to apogee: 11.9s, expected altitude: 766 m
empty weight [kg]

M6Lפ

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=0.641 \mathrm{~kg}$
Results: time to apogee: 11.7 s , expected altitude: 752 m
empty weight [kg]

ML9פ G61W

Aerotech	
$\mathrm{I}_{\text {tot }}$	$=110.8 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}$	$=54.3 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}$	$=2.04 \mathrm{~s}$
d	$=38 \mathrm{~mm}$
Data source:	
Aerotech	

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=0.640 \mathrm{~kg}$
Results: time to apogee: 11.8 s , expected altitude: 768 m
empty weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=0.640 \mathrm{~kg}$
Results: time to apogee: 11.2 s , expected altitude: 770 m
empty weight [kg]

 G80T

11. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
12. Move along horizontal to left border of density scale
13. Move up slanted line to vertical line matching density at launch site
14. From intersection point move horizontally to vertical line matching rocket mass
15. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.578 \mathrm{~kg}$
Results: time to apogee: 12.5 s , expected altitude: 980 m
empty weight [kg]

16. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
17. Move along horizontal to left border of density scale
18. Move up slanted line to vertical line matching density at launch site
19. From intersection point move horizontally to vertical line matching rocket mass
20. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=0.651 \mathrm{~kg}$
Results: time to apogee: 12.8s, expected altitude: 947 m
empty weight [kg]

sample: \quad diameter $=45 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{mm}^{2}$, weight $=0.678 \mathrm{~kg}$
Results: time to apogee: 13.7 s , expected altitude: 1127 m
empty weight [kg]

H97J

[^1]1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.282 \mathrm{~kg}$
Results: time to apogee: 12.0s, expected altitude: 712 m
empty weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.264 \mathrm{~kg}$
Results: time to apogee: 12.5s, expected altitude: 822 m
empty weight [kg]

11. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
12. Move along horizontal to left border of density scale
13. Move up slanted line to vertical line matching density at launch site
14. From intersection point move horizontally to vertical line matching rocket mass
15. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.293 \mathrm{~kg}$
Results: time to apogee: 12.8 s , expected altitude: 786 m
empty weight [kg]

16. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
17. Move along horizontal to left border of density scale
18. Move up slanted line to vertical line matching density at launch site
19. From intersection point move horizontally to vertical line matching rocket mass
20. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.249 \mathrm{~kg}$
Results: time to apogee: 12.8 s , expected altitude: 908 m
empty weight [kg]

(
21. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
22. Move along horizontal to left border of density scale
23. Move up slanted line to vertical line matching density at launch site
24. From intersection point move horizontally to vertical line matching rocket mass
25. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=1.313 \mathrm{~kg}$

Results: time to apogee: 13.0s, expected altitude: 899m
empty weight [kg]

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=1.252 \mathrm{~kg}$
Results: time to apogee: 12.8s, expected altitude: 950m
empty weight [kg]
Aerotech H242T

Results:

time to apogee: 13.1 s , expected altitude: 932 m

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves

Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.363 \mathrm{~kg}$
Results: time to apogee: 15.2 s , expected altitude: 1398 m
empty weight [kg]

[^2]1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=1.375 \mathrm{~kg}$
Results: time to apogee: 15.5 s , expected altitude: 1410 m
empty weight [kg]

takeoff weight [kg]

Aerotech
1200 W

[^3]From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample:
Results:
diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=2.858 \mathrm{~kg}$
time to apogee: 11.3 s , expected altitude: 577 m
empty weight [kg]
(2s
takeoff weight [kg]
ML9H
Aerotech
1161 W

diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=2.885 \mathrm{~kg}$
Results: time to apogee: 11.5 s , expected altitude: 567 m
empty weight [kg]

Aerotech
$1245 G$

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=2.865 \mathrm{~kg}$
Results:
time to apogee: 11.9 s , expected altitude: 664 m
empty weight [kg]

empty weight [kg]

takeoff weight [kg]

$\begin{gathered} \text { Aerotech } \\ \text { \|154 J } \end{gathered}$
$\begin{aligned} I_{\text {tot }} & =375.4 \mathrm{Ns} \\ \mathrm{~F}_{\text {avg }} & =104.3 \mathrm{~N} \\ \mathrm{t}_{\text {bur }} & =3.60 \mathrm{~s} \\ \mathrm{~d} & =38 \mathrm{~mm} \end{aligned}$
Data source Aerotech

empty weight [kg]

पG8ZI

MLLZI
Aerotech
1211 M

Sample: diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=2.976 \mathrm{~kg}$
empty weight [kg]
N662II
五

「G6LI［سш］גәəәше！ด

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves

Sample:

diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=3.081 \mathrm{~kg}$

Results: time to apogee: 13.9 s , expected altitude: 933 m
empty weight [kg]

takeoff weight [kg]

Aerotech
1435

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.027 \mathrm{~kg}$
Results: \quad time to apogee: 15.6 s , expected altitude: 1223 m
empty weight [kg]

$M \vdash 8$ I
Aerotech
1284 M

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.068 \mathrm{~kg}$
Results:
time to apogee: 15.9 s , expected altitude: 1248 m
empty weight [kg]

$\int^{\text {gls }}$

Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.178 \mathrm{~kg}$
Results: time to apogee: 16.2 s , expected altitude: 1289 m

MG9|

Aerotech
165 W

From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
11. Move along horizontal to left border of density scale
12. Move up slanted line to vertical line matching density at launch site
13. From intersection point move horizontally to vertical line matching rocket mass
14. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.276 \mathrm{~kg}$
Results:
time to apogee: 18.5 s , expected altitude: 1297 m
empty weight [kg]

प009
Aerotech
$1600 R$

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.117 \mathrm{~kg}$
Results:
time to apogee: 17.7 s , expected altitude: 1654 m
empty weight [kg]

takeoff weight [kg]

Aerotech
$\mathrm{J} 350 \mathrm{W}$.5

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=50 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.165 \mathrm{~kg}$
Results: \quad time to apogee: 17.9s, expected altitude: 1684 m
empty weight [kg]
$0_{0,5}^{025}$

$I_{\text {tot }}=649.6 \mathrm{Ns}$ $\mathrm{F}_{\text {avg }}=433.0 \mathrm{~N}$
 $F_{\text {avg }}=433.0 \mathrm{~N}$ $t_{\text {burn }}=1.50 \mathrm{~s}$
 $\mathrm{d}=38 \mathrm{~mm}$
 ata source:
 Aerotech

-

MOSER

 takeoff weight [kg]

प8اટI

1．From rocket diameter scale move down along slanted line to vertical line matching drag coefficient．
2．Move along horizontal to left border of density scale
3．Move up slanted line to vertical line matching density at launch site
4．From intersection point move horizontally to vertical line matching rocket mass
5．Read off expected time to apogee from red curves，altitude from green curves
Sample：\quad diameter $=76 \mathrm{~mm}$, drag $=0.65$ ，density $=1180 \mathrm{~g} / \mathrm{m}^{3}$ ，weight $=3.580 \mathrm{~kg}$
Results：time to apogee：10．0s，expected altitude： 384 m
empty weight［kg］

[^4]1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=3.486 \mathrm{~kg}$
Results: time to apogee: 10.1 s , expected altitude: 458 m
empty weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves

Results: time to apogee: 10.5 s , expected altitude: 488 m
empty weight [kg]

11. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
12. Move along horizontal to left border of density scale
13. Move up slanted line to vertical line matching density at launch site
14. From intersection point move horizontally to vertical line matching rocket mass
15. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.580 \mathrm{~kg}$
Results:
time to apogee: 11.0s, expected altitude: 453m
empty weight [kg]

MLIZI

16. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
17. Move along horizontal to left border of density scale
18. Move up slanted line to vertical line matching density at launch site
19. From intersection point move horizontally to vertical line matching rocket mass
20. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=3.476 \mathrm{~kg}$
Results:
time to apogee: 11.1 s , expected altitude: 563 m
empty weight [kg]
Aerotech
$12+1 \mathrm{M}$

[^5] -

$\stackrel{\rightharpoonup}{\circ} \stackrel{\text { Density }}{\circ}$

「ـ」

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{\text {² }}$, weight $=3.527 \mathrm{~kg}$ time to apogee: 12.4 s , expected altitude: 792 m
empty weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves

Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.562 \mathrm{~kg}$
Results: time to apogee: 12.8 s , expected altitude: 831 m
empty weight [kg]

G'MOGER

MOGE
J350W

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=3.665 \mathrm{~kg}$
Results: time to apogee: 14.4 s , expected altitude: 1094 m
empty weight [kg]

M06「

00 SC -
6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=3.654 \mathrm{~kg}$
Results: time to apogee: 14.9s, expected altitude: 1221 m
empty weight [kg]

takeoff weight [kg]

109t「

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=3.833 \mathrm{~kg}$
Results: time to apogee: 15.6s, expected altitude: 1290 m
empty weight [kg]

rـg $\angle 9 \Gamma$

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves

Results: time to apogee: 15.5 s , expected altitude: 1366 m
empty weight [kg]
\int^{108}

From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=3.883 \mathrm{~kg}$

Results: time to apogee: 16.3 s , expected altitude: 1342 m
empty weight [kg]

takeoff weight [kg]

L08L「

Aerotech
$y 180 T$

[^6]1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{mm}^{2}$, weight $=3.841 \mathrm{~kg}$
Results: time to apogee: 16.6s, expected altitude: 1361 m
empty weight [kg]

J210H

[^7] 2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $-1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=4.497 \mathrm{~kg}$
Results: time to apogee: 15.9s, expected altitude: 1230 m
empty weight [kg]

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=3.880 \mathrm{~kg}$
Results: time to apogee: 16.5 s , expected altitude: 1609 m
empty weight [kg]

takeoff weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=76 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{mm}$, weight $=4.126 \mathrm{~kg}$
Results: time to apogee: 19.1s, expected altitude: 1567 m
empty weight [kg]

takeoff weight [kg]

loztr

MOSE
Aerotech
5350 M

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=5.665 \mathrm{~kg}$
Results: time to apogee: 10.6 s , expected altitude: 528 m
empty weight [kg]

(1)

sample: \quad diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=5.654 \mathrm{~kg}$
Results: time to apogee: 11.2 s , expected altitude: 610 m
empty weight [kg]

Sample: \quad diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=5.863 \mathrm{~kg}$
Results: time to apogee: 11.7 s , expected altitude: 598 m
empty weight [kg]

$109 \mathrm{t} \Gamma$

Aerotech
$5460 \top$

empty weight [kg]

108L「

Aerotech
$y 180 T$

$\begin{aligned} t_{\text {tot }} & =825.8 \mathrm{Ns} \\ \mathrm{~F}_{\text {avg }} & =183.5 \mathrm{~N} \\ \mathrm{t}_{\text {burn }} & =4.50 \mathrm{~s} \\ \mathrm{~d} & =54 \mathrm{~mm} \end{aligned}$
Aerotech

100					
100					

1000	1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient. 2. Move along horizontal to left border of density scale
	3. Move up slanted line to vertical line matching density at launch site
	4. From intersection point move horizontally to vertical line matching rocket mass
	5. Read off expected time to apogee from red curves, altitude from green curves
	Sample: diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=5.841 \mathrm{~kg}$
5003	Results: time to apogee: 12.6 s , expected altitude: 669 m

empty weight [kg]

MSEL「

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
empty weight [kg]

2. Move along horizontal to left border of density scale
3. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=6.126 \mathrm{~kg}$
Results: time to apogee: 14.8 s , expected altitude: 748 m
4. Move up slanted line to vertical line matching density at launch site
5. From intersection point move horizontally to vertical line matching rocket mass
O.
$\substack{0 \\ 0 \\ 0}$ 4. From intersection point move horizontally to vertical line matching rocket masstime to apogee: 14.8s, expected altitude: 748m

(200
MOLSC

wwil

Sample: diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=6.506 \mathrm{~kg}$
Results: time to apogee: 16.4 s , expected altitude: 1493 m
empty weight [kg]

1001LY

دOOLトン

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves

Sample: \quad diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=6.515 \mathrm{~kg}$
Results: time to apogee: 17.1s, expected altitude: 1557 m
empty weight [kg]

Aerotech
K 485 HW

2. Move along horizontal to left border of density scale
 3. Move up slanted line to vertical line matching density at launch site
 4. From intersection point move horizontally to vertical line matching rocket mass

5. Read off expected time to apogee from red curves, altitude from green curves

Sample: diameter $=102 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{\circ}$, weight $=7.220 \mathrm{~kg}$

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient

$$
\text { Results: } \quad \text { time to apogee: } 17.4 \mathrm{~s} \text {, expected altitude: } 1562 \mathrm{~m}
$$

empty weight [kg]

Results：time to apogee： 10.0 s ，expected altitude： 492 m
empty weight［kg］

$\mathrm{I}_{\text {tot }}=1474.9 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}=541.0 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}=2.73 \mathrm{~s}$
$\mathrm{~d}^{2}=54 \mathrm{~mm}$
Data source:
Aerotech

Results:

time to apogee: 11.4 s , expected altitude: 567 m
empty weight [kg]

yS69y

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=152 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=11.506 \mathrm{~kg}$
Results:
time to apogee: 11.4 s , expected altitude: 603m
empty weight [kg]

$\mathrm{I}_{\text {tot }}=1537.5 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}=960.9 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}=1.60 \mathrm{~s}$
$\mathrm{~d} \quad=54 \mathrm{~mm}$
Data source：
Aerotech

1000				

Results： time to apogee： 11.4 s ，expected altitude： 640 m
empty weight［kg］

Results:time to apogee: 12.0 s , expected altitude: 620 m
empty weight [kg]

Results: time to apogee: 12.6 s , expected altitude: 735 m
empty weight [kg]

Aerotech
K 1275 R

	-		
N			
χ			
\cdots			
$\cdots \mathrm{O}$			
		-	
		S	

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=152 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=12.061 \mathrm{~kg}$
Results:
time to apogee: 13.7 s , expected altitude: 985 m
empty weight [kg]

Results:time to apogee: 15.9 s , expected altitude: 855 m
empty weight [kg]

$\mathrm{I}_{\text {tot }}=2157.2 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}=862.9 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}=2.50 \mathrm{~s}$
$\mathrm{~d} \quad=54 \mathrm{~mm}$
Data source:
Aerotech

Results:time to apogee: 14.0s, expected altitude: 983 m
empty weight [kg]

Sample: diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=12.035 \mathrm{~kg}$

Results:
time to apogee: 14.6 s , expected altitude: 1060 m
empty weight [kg]

takeoff weight [kg]
$\begin{array}{llllll}5 & 6 & 7 & 8 & 9 & 10\end{array}$
nslator

MOOLY [wul iepweice "i8

y08Ly

Sample: \quad diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=12.714 \mathrm{~kg}$

[^8]empty weight [kg]

© 2007-2008 Andreas Müller, translation by

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=12.128 \mathrm{~kg}$
Results
time to apogee: 14.9 s , expected altitude: 1192 m
empty weight [kg]

Results:time to apogee: 16.3 s , expected altitude: 1019 m
empty weight [kg]

Sample: Results: diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=12.211 \mathrm{~kg}$
Results: \quad time to apogee: 17.8 s , expected altitude: 1112 m
empty weight [kg]
(18)

Results:time to apogee: 18.3 s , expected altitude: 1136 m
empty weight [kg]

$\lrcorner 0<1+17$

Aerotech
$\mathrm{I}_{\text {tot }}=4222.6 \mathrm{Ns}$ $\mathrm{F}_{\text {avg }}=1136.9 \mathrm{~N}$ $\mathrm{t}_{\text {burn }}=3.71 \mathrm{~s}$ d
Data source: Aerotech

\square				
,				
,				
x				
-				
		人		
			\bigcirc	

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
diameter $=152 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=14.990 \mathrm{~kg}$
Results:
time to apogee: 18.7 s , expected altitude: 1942 m
empty weight [kg]
\qquad $\begin{array}{llllllll}5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
Aerotech
L1150R

$\mathrm{I}_{\text {tot }}$	$=3488.6 \mathrm{Ns}$
$\mathrm{F}_{\text {avg }}$	$=1102.2 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}$	$=3.17 \mathrm{~s}$
d	$=75 \mathrm{~mm}$
Data source: Aerotech	

	2. Move along horizontal to left border of density scale
	3. Move up slanted line to vertical line matching density at launch site
	4. From intersection point move horizontally to vertical line matching rocket mass
	5. Read off expected time to apogee from red curves, altitude from green curves
	Sample: diameter $=190 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=23.674 \mathrm{~kg}$ Results: time to apogee: 13.3 s , expected altitude: 763 m

empty weight [kg]

takeoff weight [kg]

Dala sourch
Aerotech

[^9]1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=190 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=23.876 \mathrm{~kg}$
Results: time to apogee: 14.2s, expected altitude: 921m
empty weight [kg]

700817

1300R

\(\begin{aligned} \mathrm{F}_{tot} \& =4556.4 \mathrm{~N}
\mathrm{~F}_{avg} \& =1301.8 \mathrm{~N}\end{aligned}\)
$t_{\text {burn }}=3.50 \mathrm{~s}$

$\mathrm{d}=98 \mathrm{~mm}$
Data sour

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=190 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=24.884 \mathrm{~kg}$
Results: time to apogee: 15.5 s , expected altitude: 1089 m
empty weight [kg]

-

1420R

tot $=4616.3 \mathrm{~N}$ $\mathrm{~F}_{\text {avg }}=1424.8 \mathrm{~N}$
$\mathrm{F}_{\text {avg }}=1424.8$ $\mathrm{t}_{\text {burn }}=3.24 \mathrm{~s}$

$\mathrm{d}=75 \mathrm{~mm}$
Data sour
Aerotech
Aerotech

[^10]From rocket diameter scale move down along slanted line to vertical line matching drag coefficient
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=190 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{2}$, weight $=24.562 \mathrm{~kg}$
Results: time to apogee: 15.6 s , expected altitude: 1137 m
empty weight [kg]

L1120W

Aerotech

$\mathrm{F}_{\text {avg }}^{\text {tot }}=982.7 \mathrm{~N}$

$\mathrm{F}_{\text {avg }}=982.7 \mathrm{~N}$
$\mathrm{t}_{\text {burn }}=5.01 \mathrm{~s}$
$\mathrm{d}=75 \mathrm{~mm}$
Data sourc
Aerotech

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=190 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=24.658 \mathrm{~kg}$
Results: time to apogee: 16.5 s , expected altitude: 1232 m
empty weight [kg]
takeoff weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
Aerotech L1500T

7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: diameter $=190 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=24.659 \mathrm{~kg}$
Results: time to apogee: 16.4s, expected altitude: 1271 m
empty weight [kg]

MZS67

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample:
diameter $=190 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}^{3}$, weight $=25.026 \mathrm{~kg}$
Results:
time to apogee: 17.5 s , expected altitude: 1198 m
empty weight [kg]

[^11]2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=190 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=26.833 \mathrm{~kg}$
Results: time to apogee: 19.9s, expected altitude: 1670 m
empty weight [kg]

takeoff weight [kg]

1. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=190 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=27.004 \mathrm{~kg}$
Results: time to apogee: 19.3s, expected altitude: 1844 m
empty weight [kg]

MOG $\angle W$

10

From rocket diameter scale move down along slanted line to vertical line matching drag coefficient

2. Move along horizontal to left border of density scale
3. Move up slanted line to vertical line matching density at launch site
4. From intersection point move horizontally to vertical line matching rocket mass
5. Read off expected time to apogee from red curves, altitude from green curves
sample: \quad diameter $=190 \mathrm{~mm}, \mathrm{drag}=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=28.776 \mathrm{~kg}$
Results: time to apogee: 25.3s, expected altitude: 2429 m
empty weight [kg]

6. From rocket diameter scale move down along slanted line to vertical line matching drag coefficient.
7. Move along horizontal to left border of density scale
8. Move up slanted line to vertical line matching density at launch site
9. From intersection point move horizontally to vertical line matching rocket mass
10. Read off expected time to apogee from red curves, altitude from green curves
Sample: \quad diameter $=400 \mathrm{~mm}$, drag $=0.65$, density $=1180 \mathrm{~g} / \mathrm{m}$, weight $=48.064 \mathrm{~kg}$
Results: time to apogee: 13.4 s , expected altitude: 871 m
empty weight [kg]

A8	1-1	G76G	3-32	J1999N	6-38, 7-22	L952W	9-8
B4	1-2	G77R	3-25	J210H	6-35, 7-13	M1297W	9-12
C6	1-3	G78G	3-29	J250FJ	6-27, 7-4	M1315W	9-16
D12	2-1	G79W	3-26	J260HW	7-19	M1419W	9-20
D13W	2-5	G80T	3-34	J275W	6-32, 7-9	M1500G	9-10
D15T	2-7	H112J	4-15	J315R	6-29, 7-6	M1550R	9-13
D21T	2-6	H123W	4-8	J350W	5-22, 6-25, 7-3	M1600R	10-1, 9-17
D24T	2-2	H128W	4-2	J350W. 5	5-20, 6-23, 7-1	M1800FJ	10-4
D7-RC	2-3	H148R	4-10	J390HW-TURBO	7-23	M1850W	9-19
D9W	2-4	H165R	4-3	J401FJ	7-17	M1939W	10-7
E11J	2-8	H180W	4-7	J415W	7-20	M2000R	10-5
E12J-RC	2-9	H210R	4-9	J420R	5-21, 6-24, 7-2	M2030G	9-11
E15W	2-14	H220T	4-11	J460T	6-30, 7-7	M2100G	10-3
E16W	2-11	H238T	4-1	J500G	6-28, 7-5	M2400T	10-2
E18W	2-15	H242T	4-13	J540R	7-18	M2500T	10-6
E23T	2-10	H250G	4-14	J570W	7-16	M3500R	9-18
E28T	2-13	H268R	4-16	J575FJ	6-31, 7-8	M650W	9-14
E30T	2-12	H55W	4-4	J800T	7-21	M750W	9-21
F12J	2-16	H669N	4-12	J825R	6-36, 7-14	M845HW	9-15
F20W	3-10	H73J	4-5	J90W	6-26	N1000W	9-22
F21W	3-7	H97J	4-6	K1050W	8-16	N2000W	10-8
F22J	3-12	H999N	4-19	K1100T	7-28, 8-4	N4800T	10-9
F23FJ	3-6	I115W	6-10	K1275R	8-8		
F24W	3-2	I117FJ	6-5	K1499N	7-24, 8-1		
F25W	3-14	I1299N	5-11, 6-15	K185W	7-25		
F26FJ	3-11	1154J	4-24, 5-7, 6-7	K1999N	8-18		
F27R	3-3	I161W	4-21, 5-4, 6-3	K250W	8-19		
F35W	3-9	I195J	5-12, 6-16	K270W	8-9		
F37W	3-5	I200W	4-20, 5-3	K458W	8-17		
F39T	3-4	I211W	5-10, 6-14	K485HW	7-30, 8-6		
F40W	3-17	I215R	6-8	K513FJ	7-26, 8-2		
F42T	3-8	I218R	4-18, 5-2, 6-2	K550W	7-29, 8-5		
F50T	3-13	I225FJ	4-23, 5-6, 6-6	K560W	8-15		
F52T	3-15	I229T	6-12	K650T	8-14		
F62T	3-1	I245G	4-22, 5-5, 6-4	K680R	8-12		
G104T	3-16	I284W	5-15, 6-19	K695R	7-27, 8-3		
G142	3-19	I285R	5-9, 6-13	K700W	8-11		
G339N	3-31	I300T	5-8, 6-11	K780R	8-13		
G33J	3-22	I305FJ	5-13, 6-17	K805G	7-31, 8-7		
G35EJ	3-24	I357T	4-17, 5-1, 6-1	K828FJ	8-10		
G38FJ	3-20	I364FJ	5-17, 6-21	L1120W	9-6		
G40W	3-23	I366R	5-16, 6-20	L1150R	9-1		
G53FJ	3-21	1435T	5-14, 6-18	L1170FJ	8-21		
G54W	3-18	I599N	6-9	L1300R	9-4		
G61W	3-30	I600R	5-19, 6-22	L1390G	9-3		
G64W	3-33	165W	5-18	L1420R	9-5		
G67R	3-28	J1299N	7-12	L1500T	9-7		
G69N	3-35	J135W	6-37, 7-15	L2200G	9-9		
G71R	3-27	J145H	6-33, 7-10	L339N	8-20		
G75J	3-36	J180T	6-34, 7-11	L850W	9-2		

[^0]:

[^1]: 응

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

[^8]: Results:
 time to apogee: 15.5 s , expected altitude: 1090 m

[^9]:

[^10]:

[^11]:

